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Abstract – We explore the quench dynamics of a two-dimensional, weakly interacting disordered
Bose gas for various relative strengths of interactions and disorder. This allows us to identify
two well distinct out-of-equilibrium regimes. When interactions are smaller than the disorder, the
gas experiences multiple scattering and exhibits a short-range spatial coherence. At short time
this coherence is only smoothly affected by interactions, via a diffusion process of the particles’
energies. When interactions are larger than the disorder, scattering ceases and the gas behaves
more and more like a fluid, ultimately like a superfluid at low energy. In the superfluid regime, the
gas exhibits a long-range algebraic coherence, characteristic of a pre-thermal regime in disorder.

focus  article perspective Copyright c© 2021 EPLA

Introduction. – In quantum gases, the interplay be-
tween disorder and interactions leads to a rich variety
of phenomena. At low temperature, for instance, a one-
dimensional Bose gas in equilibrium behaves either as an
insulator or a superfluid depending on the relative strength
of disorder and interactions [1]. The insulating phase has
been predicted to be robust at finite temperature, up to a
critical point known as the many-body localization tran-
sition [2]. Initially described for interacting electrons in
dirty conductors [3,4], many-body localization has, since
then, triggered a considerable interest in various fields of
physics [5]. Another intriguing problem is the dynami-
cal evolution of interacting disordered gases brought out
of equilibrium by an initial quench. In the homogeneous
case, out-of-equilibrium interacting gases generically ther-
malize to a universal Gibbs ensemble [6]. For sufficiently
strong disorder and interactions, on the other hand, many-
body localization may prevent thermalization from occur-
ring [5]. In between these two limits, the quench dynamics
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of disordered quantum gases remains largely unexplored,
in particular in dimensions larger than one.

In this context, a yet poorly explored problem is the
out-of-equilibrium dynamics of weakly interacting disor-
dered gases. In this regime, mostly states in the ergodic
phase of the many-body localization transition contribute
to the dynamics, so that thermalization is the rule. For
bosons, the weakly interacting regime can be tackled at
the mean-field level using the disordered Gross-Pitaevskii
equation. The dynamical establishment of thermalization
in this context was previously studied in one-dimensional
disordered chains [7,8] and in two-dimensional (2D) [9,10]
random potentials, in cases where the disorder is typically
larger than interactions. In this regime, the short-time
dynamics of the gas is governed by multiple scattering,
while interactions make the system thermalize on a longer
time scale. The opposite limit of a disorder smaller than
interactions has, on the other hand, little been explored
in an out-of-equilibrium context.

In this letter, we study the quench dynamics of a 2D
weakly interacting disordered Bose gas by varying the rel-
ative strengths of disorder and interactions over a wide
range. We characterize this dynamics by numerically and
analytically computing the momentum distribution and
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the coherence function of the gas, focusing on relatively
short times, before the system is fully thermalized. For a
disorder larger than interactions, we recover that the gas
experiences multiple scattering, while being slowly ther-
malized by interactions. The spatial coherence is low in
this limit. Upon increasing the strength of interactions, we
find that scattering diminishes and that the gas behaves
more and more like a fluid. Ultimately, when interactions
become larger than the disorder, the gas becomes a non-
equilibrium disordered superfluid with a long-range, alge-
braic coherence emerging in a light-cone fashion, which is
typical of a 2D pre-thermalization process.

The model. – Following the approach of [9–15], we
consider a simple out-of-equilibrium protocol where a 2D
N -particle Bose gas, initially prepared in the plane-wave
state |k0〉, undergoes at t = 0 a simultaneous interaction
and disorder-potential quench. We describe the ensuing
dynamics for t > 0 with the time-dependent disordered
Gross-Pitaevskii equation

i∂tΨ(r, t) =

[
−∇2

2m
+ V (r) + gN |Ψ(r, t)|2

]
Ψ(r, t)

(1)
for the Bose mean field Ψ(r, t), normalized according to∫

d2r|Ψ(r, t)|2 = 1. Here and in the rest of the letter, we
set ! = 1. We choose the random potential V (r) to be
a blue-detuned speckle, with mean value V (r) = 0 and
correlation function V (r)V (r′) = V 2

0 exp(−|r− r′|2/2σ2),
where V0 is the amplitude of disorder fluctuations, σ the
correlation length, and the overbar refers to disorder av-
eraging. In our numerical simulations, we generate this
potential in a standard way, by convoluting a spatially
δ-correlated complex Gaussian random field with a Gaus-
sian cut-off function and taking the modulus square of the
resulting field [16,17]. The temporal propagation of the
initial plane wave is performed using a split-step algorithm
that includes a Chebyshev expansion of the linear part of
the evolution operator, as explained in [10]. Simulations
are performed on a 2D regular grid of size L×L with peri-
odic boundary conditions along x and y. A cell of surface
(πσ)2 is discretized in typically 5 to 7 steps along both x
and y. Throughout the paper, numerical values of lengths,
momenta, energies and times will be given in units of σ,
σ−1, 1/(mσ2) and mσ2, respectively. Finally, all the re-
sults are averaged over 3200 to 4800 disorder realizations.

Momentum distributions. – We first compute nu-
merically the disorder-averaged momentum distribution
nk(t) ≡ |〈k|Ψ(t)〉|2 from eq. (1) using the procedure ex-
plained above, for various relative values of the disor-
der potential fluctuations, V0, initial kinetic energy ε0 ≡
k2
0/2m and initial interaction energy gρ0 ≡ gN/V , where

V = L2 is the volume of the system. The distribution is
normalized according to

∫
d2k/(2π)2nk(t) = 1. Density

plots of nk(t) are shown in fig. 1, with the columns corre-
sponding to different parameter regimes and the rows to
three successive times, chosen relatively short compared

to the time where the gas gets completely thermalized by
interactions.

– Regime ε0 > V0 > gρ0 (figs. 1(a)): Particles of en-
ergy ∼ ε0 experience elastic multiple scattering on the
disorder potential, which randomizes the direction of
their momenta. The distribution nk(t) thus quickly
becomes a ring of radius k0. As time increases (from
fig. 1(a-1) to (a-3)), the ring is slowly smoothed by
particle collisions (thermalization).

– Regime ε0 > gρ0 > V0 (figs. 1(b)): When the inter-
action strength is increased, particle collisions scram-
ble the distribution before the scattering ring is fully
formed.

– Regime gρ0 > ε0 > V0 (figs. 1(c)): When interactions
become larger than the initial kinetic energy, the gas
starts to behave as a superfluid. There is no longer
scattering, rather the disorder-induced field fluctu-
ations are coherently enhanced and manifest them-
selves as interference rings, which become tighter and
tighter as time increases.

– Regime gρ0 > V0 > ε0 (figs. 1(d)): Same as in
figs. 1(c), but for a Bose gas initially almost motion-
less, at rest on the plots (ε0 = 0).

To better understand the physics at play in the distri-
butions of fig. 1, we now discuss more in details the two
extreme regimes of figs. 1(a) and (d).

Multiple-scattering regime. – We first address the
low-interaction regime of figs. 1(a). Since interactions are
typically the smallest energy scale in this limit, the physics
at short time is essentially a multiple-scattering process of
quasi-particles with energy εk ≡ k2/2m in the random
potential. The relevant time scale is here the scattering
mean free time τ , which gives the rate at which these
quasi-particles are elastically scattered. For the chosen
Gaussian potential, we have

1

τ
= 2πV 2

0 σ
2e−k2

0σ
2

I0(k
2
0σ

2), (2)

in the Born approximation [18], where I0 is the modi-
fied Bessel function of the first kind. When t ' τ , the
disorder-averaged momentum distribution acquires a ring
shape, as seen in figs. 1(a). For weak interactions, it was
shown to be given by [10]

nk(t) =

∫
dεAε(k)fε(t)/ν, (3)

where fε(t) is the energy distribution of the quasi-particles
(normalized according to

∫
dεfε(t) = 1), Aε(k) is their

spectral function and ν = m/2π is the 2D density of states
per unit volume. In the weak-disorder regime where k0) '
1, we have Aε(k) ( 1/(2πτ)×1/[(ε− εk)2 +1/4τ2]. In the
absence of interactions, fε(t) = Aε(k0) is independent of
time and coincides with the spectral function at k = k0.
Equation (3) then reduces to [11]

nk(g = 0) =
1

πντ

1

(εk − ε0)2 + 1/τ2
, (4)
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Fig. 1: Momentum distribution nk(t) of an interacting Bose gas launched with momentum k0 in a 2D random potential. Rows
correspond to three successive times, given in units of the scattering mean free time τ or of the nonlinear time τNL. For all plots
the disorder amplitude is set to V0 = 0.4. (a) ε0 > V0 > gρ0: particles experience multiple scattering on the random potential
(with here k0$ = 18.0). This gives rise to an incoherent elastic ring in momentum space. As time increases, the distribution
slowly thermalizes due to particle collisions. (b) ε0 > gρ0 > V0: increased interactions compete with disorder and thermalize
the distribution before the elastic ring is fully formed. (c) gρ0 > ε0 > V0: interactions are larger than the kinetic energy, so
that the gas starts to behave as a superfluid. The initial small disorder-induced field fluctuations are coherently enhanced and
yield an interference ring pattern in momentum space. (d) gρ0 > V0 > ε0 = 0: superfluid regime for a gas initially at rest.

which indeed describes a ring of half-width at half maxi-
mum ∆k ∼ 1/), where ) = k0τ/m is the mean free path.
When g )= 0, the energy distribution fε(t) evolves in time
due to particle collisions. At weak disorder, its dynamics
is governed by a Boltzmann-like kinetic equation [9,10,19].
The particle collisions occur at a mean rate given by the
Fermi golden rule

1

τcol
=2π

∫
d2k

(2π)2
|〈k0|gN |Ψ|2|k〉|2δ(ε0 − εk)∼ (gρ0)2

ε0
.

(5)
While fε(t) ultimately becomes thermal when t ' τcol [9],
as long as t < τcol the scattering ring remains well resolved
(as in figs. 1(a-1) to (a-3)) and we have found that the time
evolution of fε(t) is approximately captured by a diffusion
process in the energy domain:

fε(t) (
∫

dε′
Aε′(k0)√

4πDt
exp

[
− (ε− ε′)2

4Dt

]
, (6)

with a diffusion coefficient in energy space such that
2Dτcol ∼ 1/τ2. When g )= 0, the momentum distribution
at short time is thus obtained by convoluting the non-
interacting result (4) with the Gaussian distribution in
eq. (6). For τ + t < τcol this leads to a broadening of the
ring with half-width ∆k(t) ∼ (1 + Ct/τcol)/), with C a
numerical constant. This broadening is visible in the left
panel of fig. 2, which shows radial cuts of the scattering
ring, obtained numerically at successive times. As long
as t < τcoll we find that the widths extracted from these
cuts indeed increase linearly in time, as shown in the right
panel of fig. 2.

It is also interesting to investigate the spatial coherence
of the Bose gas in the multiple-scattering regime. To this
aim, we consider the coherence function

g1(r, t) ≡ V Ψ∗(0, t)Ψ(r, t) =

∫
d2k

(2π)2
nk(t)eik·r. (7)
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Fig. 2: Left: radial cuts of the scattering ring, computed nu-
merically at times t = 10.9τ , 15.1τ and 19.8τ from top to
bottom (numerical data points have been joined for clarity).
Each cut involves an angular average of the momentum distri-
bution. Right: half-width at half maximum (HWHM) of the
ring, obtained by fitting the radial cuts with a Lorentzian pro-
file in a k-window of width 0.8 centered on k0 (red symbols).
Error bars are deduced from the χ2 goodness of the fits. The
solid line is a linear fit ∆kfit(t) = 1/$[1 + 6.38(t − 5.84τ)/τcol],
which confirms the theoretical expectation. The dashed line
shows the g = 0 result, ∆k = 1/$. Here gρ0 = 0.07, V0 = 0.2,
k0 = 1.57, k0$ = 36 and the chosen system size is L = 200π.
With these parameters, τ = 14.6 and τcol = 251.5.

When g = 0, nk is given by eq. (4), so that g1(r, t) =
J0(k0r) exp(−r/)), with r ≡ |r| and J0 the Bessel function
of the first kind [18]. This expression is essentially the first-
order correlation function of the 2D matter-wave speckle
pattern formed by the particles scattered on the random
potential [20]. It shows that the coherence length of the
Bose gas is rather short in the multiple-scattering regime1,
of the order of the de Broglie wavelength 2π/k0. We show
in fig. 3 the g1 function computed numerically from eq. (1)
for g = 0, together with the above theoretical formula. In
the presence of interactions and as long as t < τcol, the
shape of nk remains close to the Lorentzian (4), with a
broadened width ∆k(t) ∼ (1 + Ct/τcol)/), such that

g1(r, t) ( J0(k0r) exp[−∆k(t)r]. (8)

As shown in fig. 3, eq. (8) describes very well the numer-
ical results for g1 at g )= 0. Here the main effect of in-
teractions is to smooth the matter-wave speckle, without
significantly affecting the coherence of the gas. This pic-
ture would of course change at long time t ' τcol, where
the momentum distribution starts to significantly deviate
from eq. (4) and approaches a thermal law [9].

Superfluid regime. – We now address the opposite,
superfluid regime where gρ0 ' V0 ' ε0. From now on,
we focus for simplicity on the case ε0 = 0 of a gas initially
at rest, corresponding to the numerical distributions in

1In the multiple-scattering regime, the g1 function has a small
imaginary part at short time t ! τ where the momentum distribution
is not yet fully isotropic. In this paper, however, we focus on times
t " τ , so that this imaginary part is negligible.
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Fig. 3: Radial cut of the coherence function g1(r, t) of the Bose
gas in the multiple-scattering regime (see footnote 1) (the cut
also involves an angular average of g1). For g = 0 (outer black
symbols, numerics, and solid black curve, theory) the function
is independent of time after a few τ and exhibits oscillations
at the scale 2π/k0. In the presence of interactions, these os-
cillations are smoothed. Colored solid curves for g "= 0 are
the theoretical prediction, eq. (8), in which we take the value
∆k(t) = ∆kfit(t) given in the caption of fig. 2. Parameters are
the same as in fig. 2.

figs. 1(d-1) to (d-3). In such a low-energy regime, the
natural approach for describing the dynamics of the 2D
Bose gas relies on the density-phase representation of the
wave function [21,22]

Ψ(r, t) =
√

ρ(r, t) exp[iθ(r, t) − igρ0t]/
√

N, (9)

with the initial condition ρ(r, 0) = ρ0 and θ(r, 0) = 0.
−igρ0t is the dynamical phase of the uniform solution in
the absence of disorder (ρ(r, t) ≡ ρ0) and the 1/

√
N ≡

1/
√
ρ0V factor guarantees our choice of normalization at

t = 0,
∫

d2r|Ψ(r, t)|2 = 1. As the gas evolves in time,
the density ρ(r, t) and the phase θ(r, t) fluctuate due to
the presence of the disorder potential. We then exploit
that the disorder potential is the smallest energy scale
to make use of perturbation theory. Precisely, we write
ρ(r, t) = ρ0 + δρ(r, t) and linearize the Gross-Pitaevskii
equation (1) with respect to δρ(r, t) and ∇θ(r, t) (with-
out any assumption on the phase itself, which may be
strongly fluctuating in this regime) [23]. This leads to the
Bogoliubov-de Gennes equations

∂δρ

∂t
= −ρ0

m
∇2θ, (10)

∂θ

∂t
=

1

4mρ0
∇2δρ− V (r) − gδρ, (11)

which can be readily diagonalized to provide the density,

δρ(r, t) = −2ρ0

∫
d2k

(2π)2
V (k)

1 − cos(Ekt)

εk + 2gρ0
eik·r (12)
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and the phase fluctuations,

θ(r, t) = −
∫

d2k

(2π)2
V (k)

sin(Ekt)

Ek
eik·r, (13)

where V (k) refers to the Fourier transform of V (r). These
expressions involve the well-known Bogoliubov dispersion
relation, Ek ≡

√
εk(εk + 2gρ0), where we recall that εk =

k2/2m. The coherence function follows from the relation

g1(r, t) = exp

{
−
∫

d2k

(2π)2
(1 − cos k · r)

×
[
|θ(k, t)|2 + |δρ(k, t)|2/(4ρ2

0)
]}

, (14)

deduced from the Bogoliubov-Popov theory of fluctu-
ations [22–24], here adapted to the classical disorder-
induced fluctuations θ(r, t) and δρ(r, t). Inserting
eqs. (12) and (13) into eq. (14) and performing the dis-
order averages, we find:

g1(r, t) = exp

{
−
∫

d2k

(2π)2
B(k)(1 − cos k · r)

×
([

1 − cos(Ekt)

εk + 2gρ0

]2

+

[
sin(Ekt)

Ek

]2
)}

,

(15)

where B(k)≡
∫

dreik·rV (0)V (r)=2πV 2
0 σ

2e−q2σ2/2 is the
disorder power spectrum. The physical content of eq. (15)
is the dynamical spreading of correlations in a Bose gas ini-
tially quenched from a weakly fluctuating state [25], here
in two dimensions. Unlike quench configurations more
commonly encountered in the literature however [24–29],
in our case the fluctuations are neither of quantum or ther-
mal origin, but come from the random potential. In the
present regime, scattering does not take place, so that the
mean free time τ is no longer a relevant time scale. In-
stead, the short-time dynamics of the Bose gas is governed
by the nonlinear time τNL ≡ 1/gρ0. For t ' τNL and at
the intermediate separations ξ + r ≡ |r| + 2cst, where
ξ ≡ 1/

√
gρ0m is the healing length and cs =

√
gρ0/m

is the speed of sound, eq. (15) simplifies to the time-
independent algebraic law

g1(r, t) (
[
G(σ/ξ)

ξ

r

]α
, (16)

where α ≡ (V0σ/
√

2gρ0ξ)2 and G(x) =
√

2x exp{[(6x2 +
1) exp(2x2)E1(2x2) − 3 − γ]/2}, with γ being the Euler-
Mascheroni constant and E1 the first-order exponential
integral. A similar 2D algebraic scaling was found in [30],
in a configuration where the fluctuations were however
encoded in the initial state and not in a disorder poten-
tial. Note that eq. (16) is both independent of time and
of the precise shape of the disorder spectrum B(k). It
only depends on the small set of parameters {ξ,σ, gρ0, V0}
and is thus, to a large extent, universal. Time inde-
pendence and universality are characteristic properties

of a pre-thermalization process, where a quenched sys-
tem quickly converges to a fixed, thermal-like point, from
where it only departs very slowly [26–29]. In the present
scenario, the existence of a pre-thermalization regime re-
quires the disorder amplitude to be very weak, so that
the system is nearly integrable at short time. In the
pre-thermal regime, the correlation function (16) looks
like the one of a uniform 2D Bose superfluid at equilib-
rium and finite temperature [31], and the gas exhibits
an algebraically decaying coherence [22], in strong con-
trast with the multiple-scattering regime (compare with
eq. (8)). Equation (16) breaks down at r = 2cst, the
boundary of a light cone within which correlations can
spread. Out of the light cone, g1(r, t) ( [G(σ/ξ)ξ/4cst]α

reaches a time-dependent plateau, reminiscent of the per-
fect coherence of the initial plane-wave state. Let us men-
tion that to observe the algebraic law (16), it is required
to use of a correlated potential with σ ≤ ξ so to select the
low-k phonon modes Ek ( csk in eq. (15). In particular,
for an uncorrelated potential we have found no numerical
evidence of algebraic decay in the coherence function.

Within the linearization approach that led us to eq. (15),
the disorder fluctuations are described in terms of indepen-
dent Bogoliubov quasi-particles, which reduce to phonons
at low energy. Collisions between these phonons make
the system slowly depart from the pre-thermal regime de-
scribed by eq. (16) [32]. While the effect of these collisions
remains small at short time, it was found in [30] that even
at short time it is necessary to take them into account in
order to achieve a quantitative agreement with numerical
simulations for g1. The consequence of phonon collisions is
a deviation of the fluid fluctuations |θ(k, t)|2 and |δρ(k, t)|2
in eq. (14) from their quadratic expressions [32]. At short
time, this deviation is small and thus reduces to a correc-
tion term in the second line of eq. (15). We take it of the
form β(t)/k, i.e., replace the second line of eq. (15) by
[(1−cos(Ekt))/(εk+2gρ0)]2 +[sin(Ekt)/Ek]2 +β(t)/k, and
use β(t) as a fitting parameter. The factor 1/k in the cor-
rection term is introduced somewhat arbitrarily to reduce
the weight of phonon collisions at short scale. We have
verified that an alternative fitting option, independent of
k, also allows us to reproduce the numerical results [30],
albeit less accurately at short scale. A comparison be-
tween eq. (15), modified according to this procedure, and
the exact simulations for g1, is shown in fig. 4 (parameters
are here the same as those in figs. 1(d)). The agreement
is excellent, except for the small spatial variations of g1

in the vicinity of the light-cone boundary, which are not
present in the simulation results. One reason might be a
smoothing of these variations due to particle collisions.

When V0/gρ0 + 1, one can expand the exponential
in eq. (15), so that the momentum distribution nk(t) at
k )= 0 is in first approximation given by the simple law

nk(t) ( B(k)

([
1−cos(Ekt)

εk + 2gρ0

]2

+

[
sin(Ekt)

Ek

]2
)

. (17)
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Fig. 4: Cut along x of the coherence function g1(r, t) in the su-
perfluid regime. Symbols show the numerical results obtained
at times t = 15τNL, 30τNL and 60τNL from bottom to top. Solid
curves are the theoretical prediction, eq. (15), including a phe-
nomenological β(t)/k correction accounting for phonon colli-
sions, as discussed in the main text. Fit values are β(15τNL) =
−0.0055, β(30τNL) = −0.094 and β(60τNL) = −0.152. Insets
show cuts along kx of the numerical momentum distributions
at the same times (corresponding to figs. 1(d-1) to (d-3)), to-
gether with the theory, eq. (17). Here gρ0 = 1.5, V0 = 0.4,
k0 = 0, and the chosen system size is L = 250π. With these
parameters, τNL = 0.67 and σ/ξ = 1.22.

Such a profile consists of concentric rings whose min-
ima are located at positions kn = (

√
2/ξ){−1 + [1 +

(πn/gρ0t)2]1/2}1/2, where n is a non-zero positive inte-
ger. These rings are well visible in the distributions in
figs. 1(d-1) to (d-3). Physically, they originate from both
the interference between phonons (interference pattern
∼ cos(2Ekt)) and between the phonons and the mean field
(∼ cos(Ekt)). The spacing ∼ π/(cst) between the rings de-
creases in time, signaling that the interfering particles are
further and further apart as time grows. Equation (17) is
displayed in the inset of fig. 4, together with cuts along kx

of the distributions in figs. 1(d-1) to (d-3) extracted from
simulations. The agreement is again very good, in partic-
ular for the positions of the minima, indicated by vertical
lines.

Conclusion. – We have theoretically described the dy-
namics of a 2D, weakly interacting Bose gas in the presence
of a random potential, and have identified two qualita-
tively different non-equilibrium regimes depending on the
relative strengths of disorder and interactions. For interac-
tions weaker than the disorder, the physics is that of mul-
tiple scattering, with interactions slowly thermalizing the
energy distribution and a short-range coherence at short
time. When interactions are stronger than the disorder,
on the other hand, we recover a low-energy-physics regime:
scattering ceases, the gas becomes a non-equilibrium su-
perfluid, with long-range correlations spreading within a
light cone.
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